Learning to Learn Variational Semantic Memory

The NeurIPS 2020 paper Learning to Learn Variational Semantic Memory by Xiantong Zhen*, Yingjun Du*, Huan Xiong, Qiang Qiu, Cees G. M. Snoek, and Ling Shao is now available. In this paper, we introduce variational semantic memory into meta-learning to acquire long-term knowledge for few-shot learning. The variational semantic memory accrues and stores semantic information for the probabilistic inference of class prototypes in a hierarchical Bayesian framework. The semantic memory is grown from scratch and gradually consolidated by absorbing information from tasks it experiences. By doing so, it is able to accumulate long-term, general knowledge that enables it to learn new concepts of objects. We formulate memory recall as the variational inference of a latent memory variable from addressed contents, which offers a principled way to adapt the knowledge to individual tasks. Our variational semantic memory, as a new long-term memory module, confers principled recall and update mechanisms that enable semantic information to be efficiently accrued and adapted for few-shot learning. Experiments demonstrate that the probabilistic modelling of prototypes achieves a more informative representation of object classes compared to deterministic vectors. The consistent new state-of-the-art performance on four benchmarks shows the benefit of variational semantic memory in boosting few-shot recognition.

Graphical illustration of the proposed probabilistic prototype inference with variational semantic memory.
This entry was posted in Science. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *