Personalizing Automated Image Annotation using Cross-Entropy

The paper Personalizing Automated Image Annotation using Cross-Entropy was presented today by Xirong Li et al.  at ACM Multimedia 2011. In this paper it is observed that annotating the increasing amounts of user-contributed images in a personalized manner is in great demand. However, this demand is largely ignored by the mainstream of automated image annotation research. In this paper we aim for personalizing automated image annotation by jointly exploiting personalized tag statistics and content-based image annotation. We propose a cross-entropy based learning algorithm which personalizes a generic annotation model by learning from a user’s multimedia tagging history. Using cross-entropy-minimization basedMonte Carlo sampling, the proposed algorithm optimizes the personalization process in terms of a performance measurement which can be flexibly chosen. Automatic image annotation experiments with 5,315 realistic users in the social web show that the proposed method compares favorably to a generic image annotation method and a method using personalized tag statistics only. For 4,442 users the performance improves, where for 1,088 users the absolute performance gain is at least 0.05 in terms of average precision. The results show the value of the proposed method.

This entry was posted in Science. Bookmark the permalink.

Leave a Reply

Your email address will not be published. Required fields are marked *