The cam-ready of the ICLR 2021 paper “LiftPool: Bidirectional ConvNet Pooling” by Jiaojiao Zhao and Cees Snoek is now available. Pooling is a critical operation in convolutional neural networks for increasing receptive fields and improving robustness to input variations. Most existing pooling operations downsample the feature maps, which is a lossy process. Moreover, they are not invertible: upsampling a downscaled feature map can not recover the lost information in the downsampling. By adopting the philosophy of the classical Lifting Scheme from signal processing, we propose LiftPool for bidirectional pooling layers, including LiftDownPool and LiftUpPool. LiftDownPool decomposes a feature map into various downsized sub-bands, each of which contains information with different frequencies. As the pooling function in LiftDownPool is perfectly invertible, by performing LiftDownPool backwards, a corresponding up-pooling layer LiftUpPool is able to generate a refined upsampled feature map using the detail sub-bands, which is useful for image-to-image translation challenges. Experiments show the proposed methods achieve better results on image classification and semantic segmentation, using various backbones. Moreover, LiftDownPool offers better robustness to input corruptions and perturbations.

The cam-ready of the ICLR 2021 paper “Set Prediction without Imposing Structure as Conditional Density Estimation” by David Zhang, Gertjan Burghouts and Cees Snoek is now available. Set prediction is about learning to predict a collection of unordered variables with unknown interrelations. Training such models with set losses imposes the structure of a metric space over sets. We focus on stochastic and underdefined cases, where an incorrectly chosen loss function leads to implausible predictions. Example tasks include conditional point-cloud reconstruction and predicting future states of molecules. In this paper, we propose an alternative to training via set losses by viewing learning as conditional density estimation. Our learning framework fits deep energy-based models and approximates the intractable likelihood with gradient-guided sampling. Furthermore, we propose a stochastically augmented prediction algorithm that enables multiple predictions, reflecting the possible variations in the target set. We empirically demonstrate on a variety of datasets the capability to learn multi-modal densities and produce different plausible predictions. Our approach is competitive with previous set prediction models on standard benchmarks. More importantly, it extends the family of addressable tasks beyond those that have unambiguous predictions.

The NeurIPS 2020 paper Learning to Learn Variational Semantic Memory by Xiantong Zhen*, Yingjun Du*, Huan Xiong, Qiang Qiu, Cees G. M. Snoek, and Ling Shao is now available. In this paper, we introduce variational semantic memory into meta-learning to acquire long-term knowledge for few-shot learning. The variational semantic memory accrues and stores semantic information for the probabilistic inference of class prototypes in a hierarchical Bayesian framework. The semantic memory is grown from scratch and gradually consolidated by absorbing information from tasks it experiences. By doing so, it is able to accumulate long-term, general knowledge that enables it to learn new concepts of objects. We formulate memory recall as the variational inference of a latent memory variable from addressed contents, which offers a principled way to adapt the knowledge to individual tasks. Our variational semantic memory, as a new long-term memory module, confers principled recall and update mechanisms that enable semantic information to be efficiently accrued and adapted for few-shot learning. Experiments demonstrate that the probabilistic modelling of prototypes achieves a more informative representation of object classes compared to deterministic vectors. The consistent new state-of-the-art performance on four benchmarks shows the benefit of variational semantic memory in boosting few-shot recognition.

Graphical illustration of the proposed probabilistic prototype inference with variational semantic memory.

The BMVC 2020 paper Bias-Awareness for Zero-Shot Learning the Seen and Unseen by William Thong and Cees Snoek is now available. Generalized zero-shot learning recognizes inputs from both seen and unseen classes. Yet, existing methods tend to be biased towards the classes seen during training. In this paper, we strive to mitigate this bias. We propose a bias-aware learner to map inputs to a semantic embedding space for generalized zero-shot learning. During training, the model learns to regress to real-valued class prototypes in the embedding space with temperature scaling, while a margin-based bidirectional entropy term regularizes seen and unseen probabilities. Relying on a real-valued semantic embedding space provides a versatile approach, as the model can operate on different types of semantic information for both seen and unseen classes. Experiments are carried out on four benchmarks for generalized zero-shot learning and demonstrate the benefits of the proposed bias-aware classifier, both as a stand-alone method or in combination with generated features.

The ICML 2020 paper Learning to Learn Kernels with Variational Random Features by Xiantong Zhen, Haoliang Sun, Yingjun Du, Jun Xu, Yilong Yin, Ling Shaoand Cees Snoek is now available. In this work, we introduce kernels with random Fourier features in the meta-learning framework to leverage their strong few-shot learning ability. We propose meta variational random features (MetaVRF) to learn adaptive kernels for the base-learner, which is developed in a latent variable model by treating the random feature basis as the latent variable. We formulate the optimization of MetaVRF as a variational inference problem by deriving an evidence lower bound under the meta-learning framework. To incorporate shared knowledge from related tasks, we propose a context inference of the posterior, which is established by an LSTM architecture. The LSTM-based inference network can effectively integrate the context information of previous tasks with task-specific information, generating informative and adaptive features. The learned MetaVRF can produce kernels of high representational power with a relatively low spectral sampling rate and also enables fast adaptation to new tasks. Experimental results on a variety of few-shot regression and classification tasks demonstrate that MetaVRF delivers much better, or at least competitive, performance compared to existing meta-learning alternatives.

The ICMR 2020 paper Interactivity Proposals for Surveillance Videos by Shuo Chen, Pascal Mettes, Tao Hu and Cees Snoek is now available. This paper introduces spatio-temporal interactivity proposals for video surveillance. Rather than focusing solely on actions performed by subjects, we explicitly include the objects that the subjects interact with. To enable interactivity proposals, we introduce the notion of interactivityness, a score that reflects the likelihood that a subject and object have an interplay. For its estimation, we propose a network containing an interactivity block and geometric encoding between subjects and objects. The network computes local interactivity likelihoods from subject and object trajectories, which we use to link intervals of high scores into spatio-temporal proposals. Experiments on an interactivity dataset with new evaluation metrics show the general benefit of interactivity proposals as well as its favorable performance compared to traditional temporal and spatio-temporal action proposals. 

The CVPR 2020 paper ActionBytes: Learning from Trimmed Videos to Localize Actions by Mihir Jain, Amir Ghodrati and Cees Snoek is now available. This paper tackles the problem of localizing actions in long untrimmed videos. Different from existing works, which all use annotated untrimmed videos during training, we learn only from short trimmed videos. This enables learning from large-scale datasets originally designed for action classification. We propose a method to train an action localization network that segments a video into interpretable fragments, we call ActionBytes. Our method jointly learns to cluster ActionBytes and trains the localization network using the cluster assignments as pseudo-labels. By doing so, we train on short trimmed videos that become untrimmed for ActionBytes. In isolation, or when merged, the ActionBytes also serve as effective action proposals. Experiments demonstrate that our boundary-guided training generalizes to unknown action classes and localizes actions in long videos of Thumos14, MultiThumos, and ActivityNet1.2. Furthermore, we show the advantage of ActionBytes for zero-shot localization as well as traditional weakly supervised localization, that train on long videos, to achieve state-of-the-art results.

The CVPR 2020 paper: Searching for Actions on the Hyperbole by Teng Long, Pascal Mettes, Heng Tao Shen and Cees Snoek is now available. In this paper, we introduce hierarchical action search. Starting from the observation that hierarchies are mostly ignored in the action literature, we retrieve not only individual actions but also relevant and related actions, given an action name or video example as input. We propose a hyperbolic action network, which is centered around a hyperbolic space shared by action hierarchies and videos. Our discriminative hyperbolic embedding projects actions on the shared space while jointly optimizing hypernym-hyponym relations between action pairs and a large margin separation between all actions. The projected actions serve as hyperbolic prototypes that we match with projected video representations. The result is a learned space where videos are positioned in entailment cones formed by different subtrees. To perform search in this space, we start from a query and increasingly enlarge its entailment cone to retrieve hierarchically relevant action videos. Experiments on three action datasets with new hierarchy annotations show the effectiveness of our approach for hierarchical action search by name and by video example, regardless of whether queried actions have been seen or not during training. Our implementation is available at