The BMVC 2020 paper Bias-Awareness for Zero-Shot Learning the Seen and Unseen by William Thong and Cees Snoek is now available. Generalized zero-shot learning recognizes inputs from both seen and unseen classes. Yet, existing methods tend to be biased towards the classes seen during training. In this paper, we strive to mitigate this bias. We propose a bias-aware learner to map inputs to a semantic embedding space for generalized zero-shot learning. During training, the model learns to regress to real-valued class prototypes in the embedding space with temperature scaling, while a margin-based bidirectional entropy term regularizes seen and unseen probabilities. Relying on a real-valued semantic embedding space provides a versatile approach, as the model can operate on different types of semantic information for both seen and unseen classes. Experiments are carried out on four benchmarks for generalized zero-shot learning and demonstrate the benefits of the proposed bias-aware classifier, both as a stand-alone method or in combination with generated features.

The ECCV 2020 paper Learning to Learn with Variational Information Bottleneck for Domain Generalization by Yingjun Du, Jun Xu, Huan Xiong, Qiang Qiu, Xiantong Zhen, Cees G. M. Snoek and Ling Shao is now available. Domain generalization models learn to generalize to previously unseen domains, but suffer from prediction uncertainty and domain shift. In this paper, we address both problems. We introduce a probabilistic meta-learning model for domain generalization, in which classifier parameters shared across domains are modeled as distributions. This enables better handling of prediction uncertainty on unseen domains. To deal with domain shift, we learn domain-invariant representations by the proposed principle of meta variational information bottleneck, we call MetaVIB. MetaVIB is derived from novel variational bounds of mutual information, by leveraging the meta-learning setting of domain generalization. Through episodic training, MetaVIB learns to gradually narrow domain gaps to establish domain-invariant representations, while simultaneously maximizing prediction accuracy. We conduct experiments on three benchmarks for cross-domain visual recognition. Comprehensive ablation studies validate the benefits of MetaVIB for domain generalization. The comparison results demonstrate our method outperforms previous approaches consistently. 

The ECCV 2020 paper Latent Embedding Feedback and Discriminative Features for Zero-Shot Classification by Sanath Narayan, Akshita Gupta and Fahad Khan, Cees G. M. Snoek and Ling Shao is now available. Zero-shot learning strives to classify unseen categories for which no data is available during training. In the generalized variant, the test samples can further belong to seen or unseen categories. The state-of-the-art relies on Generative Adversarial Networks that synthesize unseen class features by leveraging class-specific semantic embeddings. During training, they generate semantically consistent features, but discard this constraint during feature synthesis and classification. We propose to enforce semantic consistency at all stages of (generalized) zero-shot learning: training, feature synthesis and classification. We further introduce a feedback loop, from a semantic embedding decoder, that iteratively refines the generated features during both the training and feature synthesis stages. The synthesized features together with their corresponding latent embeddings from the decoder are transformed into discriminative features and utilized during classification to reduce ambiguities among categories. Experiments on (generalized) zero-shot learning for object and action classification reveal the benefit of semantic consistency and iterative feedback, outperforming existing methods on six zero-shot learning benchmarks.

The ICML 2020 paper Learning to Learn Kernels with Variational Random Features by Xiantong Zhen, Haoliang Sun, Yingjun Du, Jun Xu, Yilong Yin, Ling Shaoand Cees Snoek is now available. In this work, we introduce kernels with random Fourier features in the meta-learning framework to leverage their strong few-shot learning ability. We propose meta variational random features (MetaVRF) to learn adaptive kernels for the base-learner, which is developed in a latent variable model by treating the random feature basis as the latent variable. We formulate the optimization of MetaVRF as a variational inference problem by deriving an evidence lower bound under the meta-learning framework. To incorporate shared knowledge from related tasks, we propose a context inference of the posterior, which is established by an LSTM architecture. The LSTM-based inference network can effectively integrate the context information of previous tasks with task-specific information, generating informative and adaptive features. The learned MetaVRF can produce kernels of high representational power with a relatively low spectral sampling rate and also enables fast adaptation to new tasks. Experimental results on a variety of few-shot regression and classification tasks demonstrate that MetaVRF delivers much better, or at least competitive, performance compared to existing meta-learning alternatives.

The ICMR 2020 paper Interactivity Proposals for Surveillance Videos by Shuo Chen, Pascal Mettes, Tao Hu and Cees Snoek is now available. This paper introduces spatio-temporal interactivity proposals for video surveillance. Rather than focusing solely on actions performed by subjects, we explicitly include the objects that the subjects interact with. To enable interactivity proposals, we introduce the notion of interactivityness, a score that reflects the likelihood that a subject and object have an interplay. For its estimation, we propose a network containing an interactivity block and geometric encoding between subjects and objects. The network computes local interactivity likelihoods from subject and object trajectories, which we use to link intervals of high scores into spatio-temporal proposals. Experiments on an interactivity dataset with new evaluation metrics show the general benefit of interactivity proposals as well as its favorable performance compared to traditional temporal and spatio-temporal action proposals. 

The CVPR 2020 paper ActionBytes: Learning from Trimmed Videos to Localize Actions by Mihir Jain, Amir Ghodrati and Cees Snoek is now available. This paper tackles the problem of localizing actions in long untrimmed videos. Different from existing works, which all use annotated untrimmed videos during training, we learn only from short trimmed videos. This enables learning from large-scale datasets originally designed for action classification. We propose a method to train an action localization network that segments a video into interpretable fragments, we call ActionBytes. Our method jointly learns to cluster ActionBytes and trains the localization network using the cluster assignments as pseudo-labels. By doing so, we train on short trimmed videos that become untrimmed for ActionBytes. In isolation, or when merged, the ActionBytes also serve as effective action proposals. Experiments demonstrate that our boundary-guided training generalizes to unknown action classes and localizes actions in long videos of Thumos14, MultiThumos, and ActivityNet1.2. Furthermore, we show the advantage of ActionBytes for zero-shot localization as well as traditional weakly supervised localization, that train on long videos, to achieve state-of-the-art results.

The CVPR 2020 paper: Searching for Actions on the Hyperbole by Teng Long, Pascal Mettes, Heng Tao Shen and Cees Snoek is now available. In this paper, we introduce hierarchical action search. Starting from the observation that hierarchies are mostly ignored in the action literature, we retrieve not only individual actions but also relevant and related actions, given an action name or video example as input. We propose a hyperbolic action network, which is centered around a hyperbolic space shared by action hierarchies and videos. Our discriminative hyperbolic embedding projects actions on the shared space while jointly optimizing hypernym-hyponym relations between action pairs and a large margin separation between all actions. The projected actions serve as hyperbolic prototypes that we match with projected video representations. The result is a learned space where videos are positioned in entailment cones formed by different subtrees. To perform search in this space, we start from a query and increasingly enlarge its entailment cone to retrieve hierarchically relevant action videos. Experiments on three action datasets with new hierarchy annotations show the effectiveness of our approach for hierarchical action search by name and by video example, regardless of whether queried actions have been seen or not during training. Our implementation is available at

The CVPR 2020 paper: Actor-Transformers for Group Activity Recognition by Kirill Gavrilyuk, Ryan Sanford, Mehrsan Javan and Cees Snoek is now available. This paper strives to recognize individual actions and group activities from videos. While existing solutions for this challenging problem explicitly model spatial and temporal relationships based on location of individual actors, we propose an actor-transformer model able to learn and selectively extract information relevant for group activity recognition. We feed the transformer with rich actor-specific static and dynamic representations expressed by features from a 2D pose network and 3D CNN, respectively. We empirically study different ways to combine these representations and show their complementary benefits. Experiments show what is important to transform and how it should be transformed. What is more, actor-transformers achieve state-of-the-art results on two publicly available benchmarks for group activity recognition, outperforming the previous best published results by a considerable margin.