The ICCV 2023 paper Order-preserving Consistency Regularization for Domain Adaptation and Generalization by Mengmeng Jing, Xiantong Zhen, Jingjing Li, and Cees G M Snoek is now available. Deep learning models fail on cross-domain challenges if the model is oversensitive to domain-specific attributes, e.g., lightning, background, camera angle, etc. To alleviate this problem, data augmentation coupled with consistency regularization are commonly adopted to make the model less sensitive to domain-specific attributes. Consistency regularization enforces the model to output the same representation or prediction for two views of one image. These constraints, however, are either too strict or not order-preserving for the classification probabilities. In this work, we propose the Order-preserving Consistency Regularization (OCR) for cross-domain tasks. The order-preserving property for the prediction makes the model robust to task-irrelevant transformations. As a result, the model becomes less sensitive to the domain-specific attributes. The comprehensive experiments show that our method achieves clear advantages on five different cross-domain tasks.
The ICCV 2023 paper entitled Time Does Tell: Self-Supervised Time-Tuning of Dense Image Representations by Mohammadreza Salehi, Efstratios Gavves, Cees G M Snoek, Yuki M Asano is now available. Spatially dense self-supervised learning is a rapidly growing problem domain with promising applications for unsupervised segmentation and pretraining for dense downstream tasks. Despite the abundance of temporal data in the form of videos, this information-rich source has been largely overlooked. Our paper aims to address this gap by proposing a novel approach that incorporates temporal consistency in dense self-supervised learning. While methods designed solely for images face difficulties in achieving even the same performance on videos, our method improves not only the representation quality for videos-but also images. Our approach, which we call time-tuning, starts from image-pretrained models and fine-tunes them with a novel self-supervised temporal-alignment clustering loss on unlabeled videos. This effectively facilitates the transfer of high-level information from videos to image representations. Time-tuning improves the state-of-the-art by 8-10% for unsupervised semantic segmentation on videos and matches it for images. We believe this method paves the way for further self-supervised scaling by leveraging the abundant availability of videos.
The ICML 2023 paper Unlocking Slot Attention by Changing Optimal Transport Costs by Yan Zhang, David W Zhang, Simon Lacoste-Julien, Gertjan J Burghouts, Cees G M Snoek is now available. Slot attention is a powerful method for object-centric modeling in images and videos. However, its set-equivariance limits its ability to handle videos with a dynamic number of objects because it cannot break ties. To overcome this limitation, we first establish a connection between slot attention and optimal transport. Based on this new perspective we propose MESH (Minimize Entropy of Sinkhorn): a cross-attention module that combines the tiebreaking properties of unregularized optimal transport with the speed of regularized optimal transport. We evaluate slot attention using MESH on multiple object-centric learning benchmarks and find significant improvements over slot attention in every setting.
The ICML 2023 paper MetaModulation: Learning Variational Feature Hierarchies for Few-Shot Learning with Fewer Tasks by Wenfang Sun, Yingjun Du, Xiantong Zhen, Fan Wang, Ling Wang, and Cees G M Snoek is now available. Meta-learning algorithms are able to learn a new task using previously learned knowledge, but they often require a large number of meta-training tasks which may not be readily available. To address this issue, we propose a method for few-shot learning with fewer tasks, which we call MetaModulation. The key idea is to use a neural network to increase the density of the meta-training tasks by modulating batch normalization parameters during meta-training. Additionally, we modify parameters at various network levels, rather than just a single layer, to increase task diversity. To account for the uncertainty caused by the limited training tasks, we propose a variational MetaModulation where the modulation parameters are treated as latent variables. We also introduce learning variational feature hierarchies by the variational MetaModulation, which modulates features at all layers and can consider task uncertainty and generate more diverse tasks. The ablation studies illustrate the advantages of utilizing a learnable task modulation at different levels and demonstrate the benefit of incorporating probabilistic variants in few-task meta-learning. Our MetaModulation and its variational variants consistently outperform state-of-the-art alternatives on four few-task meta-learning benchmarks.
The CVPR 2023 paper Self-Guided Diffusion Models by Vincent Tao Hu, David W Zhang, Yuki M Asano, Gertjan J Burghouts, and Cees Snoek is now available. Diffusion models have demonstrated remarkable progress in image generation quality, especially when guidance is used to control the generative process. However, guidance requires a large amount of image-annotation pairs for training and is thus dependent on their availability, correctness and unbiasedness. In this paper, we eliminate the need for such annotation by instead leveraging the flexibility of self-supervision signals to design a framework for self-guided diffusion models. By leveraging a feature extraction function and a self-annotation function, our method provides guidance signals at various image granularities: from the level of holistic images to object boxes and even segmentation masks. Our experiments on single-label and multi-label image datasets demonstrate that self-labeled guidance always outperforms diffusion models without guidance and may even surpass guidance based on ground-truth labels, especially on unbalanced data. When equipped with self-supervised box or mask proposals, our method further generates visually diverse yet semantically consistent images, without the need for any class, box, or segment label annotation. Self-guided diffusion is simple, flexible and expected to profit from deployment at scale.
The CVPR 2023 paper Test of Time: Instilling Video-Language Models with a Sense of Time by Piyush Bagad, Makarand Tapaswi, Cees Snoek is now available. Modeling and understanding time remains a challenge in contemporary video understanding models. With language emerging as a key driver towards powerful generalization, it is imperative for foundational video-language models to have a sense of time. In this paper, we consider a specific aspect of temporal understanding: consistency of time order as elicited by before/after relations. We establish that six existing video-language models struggle to understand even such simple temporal relations. We then question whether it is feasible to equip these foundational models with temporal awareness without re-training them from scratch. Towards this, we propose a temporal adaptation recipe on top of one such model, VideoCLIP, based on post-pretraining on a small amount of video-text data. We conduct a zero-shot evaluation of the adapted models on six datasets for three downstream tasks which require a varying degree of time awareness. We observe encouraging performance gains especially when the task needs higher time awareness. Our work serves as a first step towards probing and instilling a sense of time in existing video-language models without the need for data and compute-intense training from scratch.
The CVPR 2023 paper SuperDisco: Super-Class Discovery Improves Visual Recognition for the Long-Tail by Yingjun Du, Jiayi Shen, Xiantong Zhen, and Cees Snoek is now available. Modern image classifiers perform well on populated classes, while degrading considerably on tail classes with only a few instances. Humans, by contrast, effortlessly handle the long-tailed recognition challenge, since they can learn the tail representation based on different levels of semantic abstraction, making the learned tail features more discriminative. This phenomenon motivated us to propose SuperDisco, an algorithm that discovers super-class representations for long-tailed recognition using a graph model. We learn to construct the super-class graph to guide the representation learning to deal with long-tailed distributions. Through message passing on the super-class graph, image representations are rectified and refined by attending to the most relevant entities based on the semantic similarity among their super-classes. Moreover, we propose to meta-learn the super-class graph under the supervision of a prototype graph constructed from a small amount of imbalanced data. By doing so, we obtain a more robust super-class graph that further improves the long-tailed recognition performance. The consistent state-of-the-art experiments on the long-tailed CIFAR-100, ImageNet, Places and iNaturalist demonstrate the benefit of the discovered super-class graph for dealing with long-tailed distributions.
The ICLR2023 cam-ready ‘Energy-Based Test Sample Adaptation for Domain Generalization‘ by Zehao Xiao, Xiantong Zhen, Shanghai Liao and Cees Snoek is now available. In this paper, we propose energy-based sample adaptation at test time for domain generalization. Where previous works adapt their models to target domains, we adapt the unseen target samples to source-trained models. To this end, we design a discriminative energy-based model, which is trained on source domains to jointly model the conditional distribution for classification and data distribution for sample adaptation. The model is optimized to simultaneously learn a classifier and an energy function. To adapt target samples to source distributions, we iteratively update the samples by energy minimization with stochastic gradient Langevin dynamics. Moreover, to preserve the categorical information in the sample during adaptation, we introduce a categorical latent variable into the energy-based model. The latent variable is learned from the original sample before adaptation by variational inference and fixed as a condition to guide the sample update. Experiments on six benchmarks for classification of images and microblog threads demonstrate the effectiveness of our proposal.
The Learning on Graphs 2022 paper “Pruning Edges and Gradients to Learn Hypergraphs from Larger Sets” by David W. Zhang, Gertjan Burghouts and Cees Snoek is now available. This paper aims for set-to-hypergraph prediction, where the goal is to infer the set of relations for a given set of entities. This is a common abstraction for applications in particle physics, biological systems and combinatorial optimization. We address two common scaling problems encountered in set-to-hypergraph tasks that limit the size of the input set: the exponentially growing number of hyperedges and the run-time complexity, both leading to higher memory requirements. We make three contributions. First, we propose to predict and supervise the positive edges only, which changes the asymptotic memory scaling from exponential to linear. Second, we introduce a training method that encourages iterative refinement of the predicted hypergraph, which allows us to skip iterations in the backward pass for improved efficiency and constant memory usage. Third, we combine both contributions in a single set-to-hypergraph model that enables us to address problems with larger input set sizes. We provide ablations for our main technical contributions and show that our model outperforms prior state-of-the-art, especially for larger sets.
The NeurIPS 2022 paper “Variational Model Perturbation for Source-Free Domain Adaptation” by Mengmeng Jing, Xiantong Zhen, Jingjing Li and Cees Snoek is now available. We aim for source-free domain adaptation, where the task is to deploy a model pre-trained on source domains to target domains. The challenges stem from the distribution shift from the source to the target domain, coupled with the unavailability of any source data and labeled target data for optimization. Rather than fine-tuning the model by updating the parameters, we propose to perturb the source model to achieve adaptation to target domains. We introduce perturbations into the model parameters by variational Bayesian inference in a probabilistic framework. By doing so, we can effectively adapt the model to the target domain while largely preserving the discriminative ability. Importantly, we demonstrate the theoretical connection to learning Bayesian neural networks, which proves the generalizability of the perturbed model to target domains. To enable more efficient optimization, we further employ a parameter sharing strategy, which substantially reduces the learnable parameters compared to a fully Bayesian neural network. Our model perturbation provides a new probabilistic way for domain adaptation which enables efficient adaptation to target domains while maximally preserving knowledge in source models. Experiments on several source-free benchmarks under three different evaluation settings verify the effectiveness of the proposed variational model perturbation for source-free domain adaptation.