The ICLR 2022 paper Hierarchical Variational Memory for Few-shot Learning Across Domains by Yingjun Du, Xiantong Zhen, Ling Shao and Cees G M Snoek is now available. Neural memory enables fast adaptation to new tasks with just a few training samples. Existing memory models store features only from the single last layer, which does not generalize well in presence of a domain shift between training and test distributions. Rather than relying on a flat memory, we propose a hierarchical alternative that stores features at different semantic levels. We introduce a hierarchical prototype model, where each level of the prototype fetches corresponding information from the hierarchical memory. The model is endowed with the ability to flexibly rely on features at different semantic levels if the domain shift circumstances so demand. We meta-learn the model by a newly derived hierarchical variational inference framework, where hierarchical memory and prototypes are jointly optimized. To explore and exploit the importance of different semantic levels, we further propose to learn the weights associated with the prototype at each level in a data-driven way, which enables the model to adaptively choose the most generalizable features. We conduct thorough ablation studies to demonstrate the effectiveness of each component in our model. The new state-of-the-art performance on cross-domain and competitive performance on traditional few-shot classification further substantiates the benefit of hierarchical variational memory.

The ICLR 2022 paper Learning to Generalize across Domains on Single Test Samples by Zehao Xiao, Xiantong Zhen, Ling Shao and Cees G M Snoek is now available. We strive to learn a model from a set of source domains that generalizes well to unseen target domains. The main challenge in such a domain generalization scenario is the unavailability of any target domain data during training, resulting in the learned model not being explicitly adapted to the unseen target domains. We propose learning to generalize across domains on single test samples. We leverage a meta-learning paradigm to learn our model to acquire the ability of adaptation with single samples at training time so as to further adapt itself to each single test sample at test time. We formulate the adaptation to the single test sample as a variational Bayesian inference problem, which incorporates the test sample as a conditional into the generation of model parameters. The adaptation to each test sample requires only one feed-forward computation at test time without any fine-tuning or self-supervised training on additional data from the unseen domains. Extensive ablation studies demonstrate that our model learns the ability to adapt models by mimicking domain shift during training. Further, our model achieves at least comparable — and often better — performance than state-of-the-art methods on multiple benchmarks for domain generalization.

The ICLR 2022 paper Multiset-Equivariant Set Prediction with Approximate Implicit Differentiation by Yan Zhang, David W Zhang, Simon Lacoste-Julien, Gertjan J Burghouts and Cees G M Snoek is now available: https://arxiv.org/abs/2111.12193

The paper Diversely-Supervised Visual Product Search by William Thong and Cees Snoek is published in ACM Transactions on Multimedia Computing, Communications, and Applications. This article strives for a diversely supervised visual product search, where queries specify a diverse set of labels to search for. Where previous works have focused on representing attribute, instance, or category labels individually, we consider them together to create a diverse set of labels for visually describing products. We learn an embedding from the supervisory signal provided by every label to encode their interrelationships. Once trained, every label has a corresponding visual representation in the embedding space, which is an aggregation of selected items from the training set. At search time, composite query representations retrieve images that match a specific set of diverse labels. We form composite query representations by averaging over the aggregated representations of each diverse label in the specific set. For evaluation, we extend existing product datasets of cars and clothes with a diverse set of labels. Experiments show the benefits of our embedding for diversely supervised visual product search in seen and unseen product combinations and for discovering product design styles.

The IJCV paper entitled On Measuring and Controlling the Spectral Bias of the Deep Image Prior, by Zenglin Shi, Pascal Mettes, Subhransu Maji and Cees Snoek is now available. The deep image prior showed that a randomly initialized network with a suitable architecture can be trained to solve inverse imaging problems by simply optimizing it’s parameters to reconstruct a single degraded image. However, it suffers from two practical limitations. First, it remains unclear how to control the prior beyond the choice of the network architecture. Second, training requires an oracle stopping criterion as during the optimization the performance degrades after reaching an optimum value. To address these challenges we introduce a frequency-band correspondence measure to characterize the spectral bias of the deep image prior, where low-frequency image signals are learned faster and better than high-frequency counterparts. Based on our observations, we propose techniques to prevent the eventual performance degradation and accelerate convergence. We introduce a Lipschitz-controlled convolution layer and a Gaussian-controlled upsampling layer as plug-in replacements for layers used in the deep architectures. The experiments show that with these changes the performance does not degrade during optimization, relieving us from the need for an oracle stopping criterion. We further outline a stopping criterion to avoid superfluous computation. Finally, we show that our approach obtains favorable results compared to current approaches across various denoising, deblocking, inpainting, super-resolution and detail enhancement tasks. Code is available at https://github.com/shizenglin/Measure-and-Control-Spectral-Bias.

The BMVC 2021 paper Feature and Label Embedding Spaces Matter in Addressing Image Classifier Bias by William Thong and Cees Snoek is now available. This paper strives to address image classifier bias, with a focus on both feature and label embedding spaces. Previous works have shown that spurious correlations from protected attributes, such as age, gender, or skin tone, can cause adverse decisions. To balance potential harms, there is a growing need to identify and mitigate image classifier bias. First, we identify in the feature space a bias direction. We compute class prototypes of each protected attribute value for every class, and reveal an existing subspace that captures the maximum variance of the bias. Second, we mitigate biases by mapping image inputs to label embedding spaces. Each value of the protected attribute has its projection head where classes are embedded through a latent vector representation rather than a common one-hot encoding. Once trained, we further reduce in the feature space the bias effect by removing its direction. Evaluation on biased image datasets, for multi-class, multi-label and binary classifications, shows the effectiveness of tackling both feature and label embedding spaces in improving the fairness of the classifier predictions, while preserving classification performance.

The BMVC 2021 paper Diagnosing Errors in Video Relation Detectors by Shuo Chen, Pascal Mettes and Cees Snoek is now available. Video relation detection forms a new and challenging problem in computer vision, where subjects and objects need to be localized spatio-temporally and a predicate label needs to be assigned if and only if there is an interaction between the two. Despite recent progress in video relation detection, overall performance is still marginal and it remains unclear what the key factors are towards solving the problem. Following examples set in the object detection and action localization literature, we perform a deep dive into the error diagnosis of current video relation detection approaches. We introduce a diagnostic tool for analyzing the sources of detection errors. Our tool evaluates and compares current approaches beyond the single scalar metric of mean Average Precision by defining different error types specific to video relation detection, used for false positive analyses. Moreover, we examine different factors of influence on the performance in a false negative analysis, including relation length, number of subject/object/predicate instances, and subject/object size. Finally, we present the effect on video relation performance when considering an oracle fix for each error type. On two video relation benchmarks, we show where current approaches excel and fall short, allowing us to pinpoint the most important future directions in the field. The tool is available at https://github.com/shanshuo/DiagnoseVRD.

The ICCV 2021 paper “Social Fabric: Tubelet Compositions for Video Relation Detection” by Shuo Chen, Zenglin Shi, Pascal Mettes and Cees Snoek is now available. This paper strives to classify and detect the relationship between object tubelets appearing within a video as a ⟨subject-predicate-object⟩ triplet. Where existing works treat object proposals or tubelets as single entities and model their relations a posteriori, we propose to classify and detect predicates for pairs of object tubelets a priori. We also propose Social Fabric: an encoding that represents a pair of object tubelets as a composition of interaction primitives. These primitives are learned over all relations, resulting in a compact representation able to localize and classify relations from the pool of co-occurring object tubelets across all timespans in a video. The encoding enables our two-stage network. In the first stage, we train Social Fabric to suggest proposals that are likely interacting. We use the Social Fabric in the second stage to simultaneously fine-tune and predict predicate labels for the tubelets. Experiments demonstrate the benefit of early video relation modeling, our encoding and the two-stage architecture, leading to a new state-of-the-art on two benchmarks. We also show how the encoding enables query-by-primitive-example to search for spatio-temporal video relations. Code: https://github.com/shanshuo/Social-Fabric.